Hydraulic stability and overtopping performance of a new type of regular placed armor unit

Tamara Eggeling Delta Marine Consultants

Contents

- Introduction XblocPlus
- Physical model tests performed
- Hydraulic stability
- Roughness coefficient

XblocPlus

- Regular placed
- Single layer
- Interlocking
- Unreinforced concrete
- Breakwater and shore protection armor unit

Background

Xbloc units are designed for random placement

Xbloc units random placement: Good packing density

Xbloc units regular placement: High packing density

Background

XblocPlus units are designed for regular placement

Physical model tests

In total more than 600 tests of which:

- >400 tests with the final shape
- 35 3D model tests (θ = 0°, 30° and 60°)
- More than 300 overtopping tests

Physical model tests

<u>Tested parameters include:</u>

- Wave steepnesses between 0.01 to 0.06
- Wave heights from 60%H_s to 250%H_s
- Slope inclinations of 1:2, 2:3 and 3:4

Hydraulic stability for all tests

Design equation:

$$\frac{H_S}{\Delta D_n} = 2.5$$

- no damage all 3:4 slope tests
- damage 3:4 slope (deep water)
- -- 125% overload on Hs / delta Dn = 2.50
- no damage all 1:2 slopte tests
- + no damage all 3D tests

Failure deep water test

Hydraulic stability 3D model tests

3D model tests

200%H_s overload conditions

$$S0 = 0.06, \theta = 0^{\circ}$$

Resilience of damaged armour layer

Resilience of damaged armour layer

Resilience of damaged armour layer

Hydraulic stability - conclusions

Large safety margin

between chosen stability number and tested stability

No rocking observed

during testing

Hydraulic stability - conclusions

Still to be tested:

Roughness coefficient

Roughness coefficient

Roughness coefficient

- Roughness coefficient for rock at $3D_n$ and $5D_n$ is $\underline{v_f} = 0.30$
- Roughness coefficient for XblocPlus (all tests) is $\underline{v_f} = 0.35$
- Correction factor for rock $c_f = \frac{0.40}{0.30} = 1.29$
- Roughness coefficient XblocPlus γ_f = 0.45

Thank you for your attention!

