

Case study Shore Protection UK

XblocPlus leads to:

- 57% reduction on costs
- 28% reduction on CO2 emissions
- Nature value in hard structure
- Resilience against climate change
- No maintenance needed

Designs used for calculations

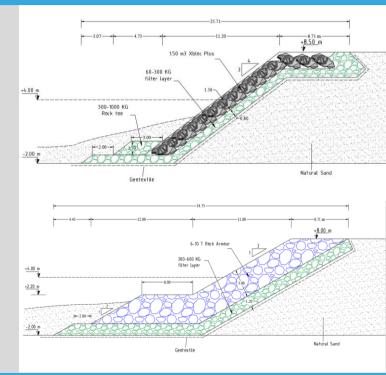
w bam 🗱 🗱 🐹

DESIGNS

ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

Equivalent Cross Sections

Assumed design conditions


- 100 year wave height Hs=3m (2015 wave climate)
- Tp=7s
- Design high water level CD+4m

Stability

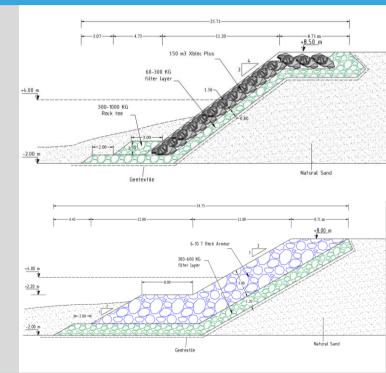
- Rock armour designed with Vd Meer equation with S=2
- XblocPlus armour with Xbloc Calculator

Overtopping

- Overtopping calculated with Vd Meer
- Equal overtopping for both designs

Material Quantities and Unit Prices

wbam 🗱 🗱 🐹 stream


DESIGNS ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

Material quantities*

		Rock design	Xbloc Plus design
Geotextile	[m2]	40.36	33.51
0.3-1 ton rock	[ton]	86.2	7.8
3-6 ton rock	[ton]	154.04	-
60-300 kg rock	[ton]	-	54.2
Xbloc Plus	[m3]	-	10.8

Unit prices

Unit prices for materials including installation				
geotextile	euro/m2	13,4		
quarry run	euro/ton	60		
60-300kg rock	euro/ton	60		
300-1000kg rock	euro/ton	60		
1-3ton rock	euro/ton	62		
3-6ton rock	euro/ton	63		
XblocPlus	euro/m3	200		

Costs

ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

Material quantities multiplied by following unit rates:

Rock design

Xbloc Plus design

Material	Price rates	Unit price	Quantity	Price [€/m]
Geotextile	Euro/m2	13	40.36	525
300-1000 kg rock	Euro/ton	40	86.2	3448
3-6 ton rock	Euro/ton	55	154.04	8472
			TOTAL	11,445
57% cost saving —				

Material	Price rates	Unit price	Quantity	Price [€/m]
Geotextile	Euro/m2	13	33.51	436
60-300 kg rock	Euro/ton	35	54.2	1,897
300-1000 kg rock	Euro/ton	40	7.8	312
Xbloc Plus	Euro/m3	250	10.8	2,691
			TOTAL	5,336

CO2 Comparison

DESIGNS ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

CO2 Emissions*

CO2 Emissions for material production – transport & installation			
	CO2-eq		
rock from quarry close by	Per ton	13	
rock armour Norway	Per ton	25,5	
XblocPlus concrete	Per m3	265	

Rock design

Material	Quantity [Tons]	CO2-eq
Armour	154.04	3,928
Filter Rock	86.2	1,121
	TOTAL	5,049

* Based on EN 15804: Sustainability of construction works - Environmental product declarations – Core rules for the product category of construction products

Xbloc Plus design

Material	Quantity [m3]	Quantity [tons]	CO2-Eq
Concrete Armour	10.8		2,853
Toe Rock		8	101
Filter Rock		54	705
		TOTAL	3,659

Sustainable - biodiversity


wbam 🗱 💥 xbloc xbloc

DESIGNS ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

Surveys in Dutch coastal waters on Xbloc and XblocPlus structures:

- Hard structures form habitat for marine life
- Rough concrete & Tidal Pools effective to stimulate marine life
- Cooperation with ECOncrete to create more nature value in hard structures

Maintenance Comparison

DESIGNS ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

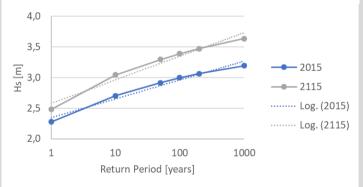
Assumptions (Monte Carlo Simulation)

Lifetime of both designs: 50 years

Location: South UK

Design for 100 year wave height

Damage Assessment:

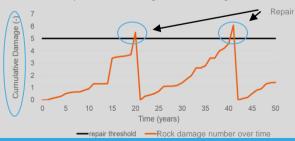

Rock Armour Design

- Vd Meer equation used to calculate damage development in multiple storm events
- Maintenance applied when S accumulative >= 5
- Following year S=0

XblocPlus design

• Maintenance applied at $\frac{Hs}{D_n * \Delta} \ge 4$

Extreme wave heights at -2m CD in South UK without climate change (2015) and with climate change (2115)

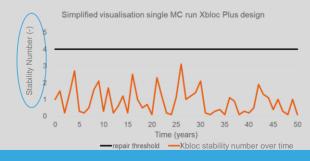

DESIGNS ECONOMICAL SUSTAINABLE CO2 EMISSION Biodiversity CLIMATE RESILIENT MAINTAINANCE

Method (Monte Carlo Simulation)

- 1. Draw 1 extreme storm per year from extreme wave climate distribution (South UK)
- 2. Determine damage progression for each storm (50 years total)
- 3. MC simulation with 1000 runs
- 4. Simulation gives probability repair and the expected nr. of repair operations needed in 50 years.

Rock design - single MC run hypothetical example

Damage progression: damage progresses with each storm. Repair needed if threshold level is exceeded (twice in example below)

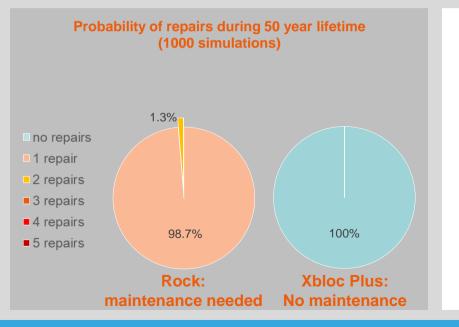


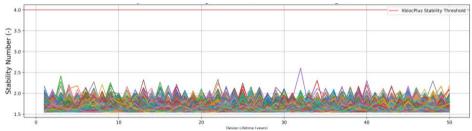
Simplified visualisation single MC run rock design

Xbloc Plus design - single MC run hypothetical example

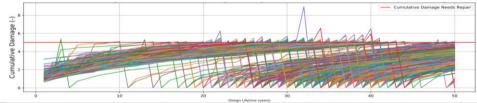
Rock damage number over time

Damage progression: damage only if a threshold wave height is exceeded. Repair is needed if damage occurs (none in example below).



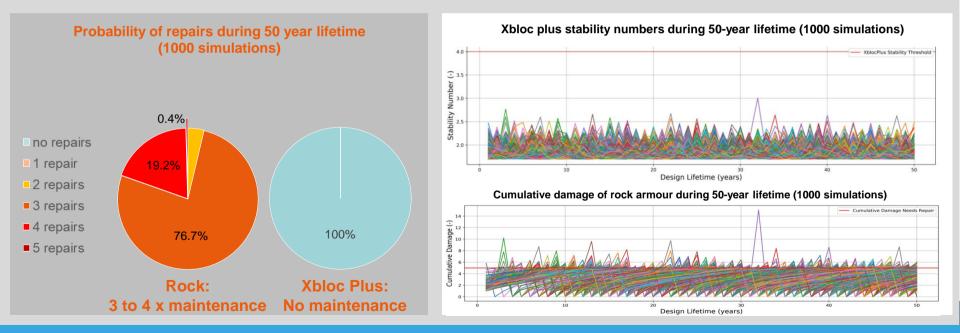

Maintenance Comparison

wblar 🗱 🗮 🗱


Present wave climate

Xbloc plus stability numbers during 50-year lifetime (1000 simulations)

Cumulative damage of rock armour during 50-year lifetime (1000 simulations)



Maintenance Comparison

wbam 🗱 🗱 🗱

Future wave climate

Conclusions

📌 bam 🗱 🗱 🐹

XblocPlus leads to:

- 57% reduction on costs
- 28% reduction on CO2 emissions
- Nature value in hard structure
- Resilience against climate change
- No maintenance needed

